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Abstract-A model is constructed to analyze the effects of normal and tangential loading on
elastically identical coated spheres. The solution for a tangential displacement applied to a circular
patch on the coated surfaces. including tbe occurrence of micro-slip (either full or partial slippage).
is derived. If it is assumed that the slip region is a circular annulus of inner radius c. then the
following two sets of approximations can be made: a "stiff" approximation that satisfies the zero
micro-slip condition exactly for the inner circle and a "soft.. approximation th'lt satisfies the
Amontons-Coulomb frictional law exactly for the slip region. It is concluded that the "soft"
approllimation gives an accur;lIe value for the symmetric traction component. Hr~:t - r~\l. induced
fly the normal and tangential loads.

I. INTRODUCTION

For mnny tribologicul applications. conted materiuls provide increased wcur rcsistunce.
Some rclcv,IRt cxnmples of coutcd products are cementl.-O curbide cutting tips (TiN. TiC).
ball bearings, gears. high speed drills. milling cutters and many muchine clements. In this
study. the normul and sliding indentution of identicul c1ustic spheres eouted with an elastic
layer is considered.

The state of strl.'Ss that arises when two deform.tble bodies urc presscd together by
forces nornml to the common t..lOgent plune at the point of initiul cont.tct is of greut
tct:hnological interest and has a long history ofstudy. In 1882. Hertl analyzed the problem of
normal frictionless contm.:t for isotropic. smooth homogeneous mnterials. Later, Cattaneo
(1938) 'lOd Mindlin (1949) treated the same case for rough bodies undergoing normal and
tangentiallouding. In the context of integral transforms. Muki (1960) has solved problems
ofasymmetric surfuce loading ofan elastic half space and layer. Lysmer and Duncan (1972)
published an extensive survey of literature on the problem of a uniform normal traction
distributed over a circular surface region. Goodman and Keer (1975) studied the case in
which the deformation takes place in identical elastic surface layers (one in each of the
solids) of arbitrary thickness, bonded to a rigid substrate. In this analysis, their reasoning
is extended to the case in which the substrate is elastic rather than rigid. The solution for
a tangenti,ll displacement applied to a circul'lr pateh on the layer surface including the c'lse
of micro-slip (either full or partial slippage) is developed. As in the case of Goodman and
Keer. it is assumed that the slip region is a circular annulus of inner radius c, and the
problem is analyzed using the following two approximations: a "stiff" approximation that
satisfies the zero micro-slip condition exactly for the inner circle and a "soft" approximation
that satisfies the Amontons-Coulomb frictional law exactly for the slip region. Two impor
t'lnt cases ,tre examined. The case of a soft layer on a rigid b..lse. as in Goodman and Keer,
may be used as a model for cartilage on bone in bioengineering studies. The case of a stitT
layer on a softer base, i.e., tungsten on steel, is important in tribological applications.

2. NORMAL LOADING OF COATED SPHERES

Basic eqlllltiolls and deril'aliolls
Suppose that two identical spheres with identical elastic surface luyers are subjected to

a normal force. P:, which produces a contact area of radius a which is assumed to be small
compared with the radii of the spheres. R. The geometry and coordinate system are shown
in Fig. I. along with a tangent force, Px (see Section 3). The state of stress in each elastic
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P"

Pz

Fig. I. Normal and langenli.tl conl'II:! of spheres coaled wilh an adherent layer.

layer and substrate due to the normal loading is governed by the following boundary
conditions:

On: = 0

On: = H

f:d = f:OI = O. 0 < r < 00

u:. = w(r), 0 < r < a

f::. = 0, a < r < 00

( la)

(I b)

( Ie)

(2a,b,c)

(2d.e,f)

Here, subscripts I and 0 represent the layer and substrate, respectively.
Following Green and Zerna (1954), to satisfy the field equations of the linear theory

ofelasticity, displacements and stresses for elastic layer and substrate are expressed in terms
of harmonic functions F,(r, 0, =) and G,(r, 0,:) through the relations

of 2G
2JI,U:, = oz' -(3-4v,)G,+= a;~

o2F 2G 02G
f:rx = :;--a' -(1-2v')-a' +=0 :J'

or z r: I/r

I a2F. I iJG. z a2G.
f:fl. = ~ ao 0: -(1-2v.) ~ cO + ~ iJO 0:

(3a)

(3b)

(3c)

(3d)

(3e)
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The harmonic functions F.(r, 0,:) and G.(r, 0,:) can be taken as

FI(r,=) =1t: [A sinh(e=)+Bcosh(~:))~-IJo(';r)de

GI(r,:) =f' {Ccosh(e=)+Dsinh(';:)]Jo(er)d~
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(30

(4a)

(4b)

(4c)

(4d)

The boundary conditions ( Ia) and (2u-f), which hold over the entire plane, are satisfied by
introducing a new coetficient I:(e) so that

(5)

The coellicients A, B, C. D, U nnd V in eqns (4'1 -d) cnn be derived by numerically solving
the following simultancous equntions in tcrms of l:(e) :

where

PI =

{JHC, D, U, VIr = r.(e) cosh {I [tanh fl, I, tnnh {I. I)r

A = (I-2vl)C, B= 2(1-\'I)D-I:(e)

(6a,b,c,d)

(6c,O

1
flsinh{I-2( I-v,)cosh{l

{lcosh fl + (1- 2v) sinh {J

{I sinh {J

{J cosh {l- sinh {J

{lcosh{I-(I-2v)sinh{1

{lsinh {l +2(I-v,)cosh{l

{l cosh {l + sinh {l

(J sinh {I

-fe-II

fe-II

-e-II

e -II

-f{{l+(3-4vo)} e- II}
f{le-II

- {{lHI-2vo)} e- II

{{1+2(I-v ll )} e- II

(6g)

Here, {l = en and r = IldJlo.
In order to satisfy boundary conditions (I b) nnd (I c) the following dual integral

equations are developed:

I'" &(e)Jo(er)e de = O. a < r < 00 (7b)Jo
with

(7c)

To solve integral equation (7a.b), a technique due to Copson (1961) is followed. When &(~)
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is expressed as

then
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(8)

= 0, a < r <::t:;.

(9a)

(9b)

Now. the boundary condition (Ic) is satisfied automatically. and for the pressure vanishing
at the edge of the contact region r =a.

cPo(a) = o. ( 10)

Following Goodman and Keer (1975). the governing equation for cPo can be derived from
(7a) as

The resultant normal force. P:, is

fZ'i"P: = -1'::I(r,O.O)rdrdO
o 0

(
It)112fIt= 4 2 (I cPo(t)dt. (12)

Next. consider the two geometrically and elastically identical spheres. to which are bonded
identical concentric clastic surface layers. According to Hertz theory. when these bodies are
compressed by normal forces. the normal displacement at the boundary of the contact
becomes

(13)

where dar is the relative approach of the two spheres. Then, allowing bap = C 1a
21R. and

using eqns (I b) and (13), eqn (II) becomes

(2)' /2
!J1 I •.= - ----··(C1o--s-). (14)It l-v,2R

The stress function cP(I and the relative approach term C l are determined simultaneously
by means of solution of the symmetric Fredholm integral equation (11) and auxiliary
condition (10). For an infinitely thick layer (al H = 0), the Hertz result is obtained:
dar = (121 R. In generaL however. (lap = C,(a2j R). From (10) and (II) the contact radius. a.
is determined: aIR = C~[2(I-vl)P:I1ta2!J,]. From (9a). the maximum normal pressure in
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Table 1. Numerical quantities for normal loading

coating layer on a rigid substrate: JJ ,IJJo = 0.0. VI =0.3;

. aZ

relative approach (15••): 15•• = C. Ii;

. a [2(I-V 1)P,]
contact radius (a): -R = C2 Z ;

na JJI

peak stress (f:z" .....): full .... ' = -C{::;zJ

alH C, Cz C)
0.0 1.000 1.178 1.50
0.2 0.887 1.173 1.50
0.4 0.795 1.145 1.50
0.6 0.728 1.089 1.51
0.8 0.681 1.015 1.53
1.0 0.648 0.936 1.55
2.0 0.573 0.627 1.72
3.0 0.547 0.459 1.81
4.0 0.534 0.360 1.86
5.0 0.527 0.296 1.88
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the contact region can be calculated: T::l(ona.) = -C)[P:/1ta2J. The numerical values of CI'

C2 and CJ are given in Tables I and 2 for the layer thickness range 0 < a/f! < 5. and for
different layer substrate combinations.

Numaical results and discussion
Computations have been carried out for several layer substrate combinations. The

thinnest layer considered had a thickness of one-fifth of the radius of the contact region.
Normal stress distributions at the layer surface are given in Fig. 2. The dashed curve is the
case when the substrate is rigid and corresponds to the soft coating situation studied by
Goodman and Keer (1975). As was determined in their study. as the layer thickness

Table 2. Numerical quantities for normal loading

hard coating: 1I,/IIn = 2.0. v, =0.3. Vo =0.211;

a2

relative approach (,s••): ,s•• = C, i(

. a [2(1-V,)P.]
contact radius (a) : -R = Cz --,-' ;

na"JJ,

peak stress (f:z ll....,): f"" ....) = -CJ[ P:,]
ICa"

alH C, C l

0.0 1.000 1.178
0.2 1.094 1.181
0.4 1.169 1.199
0.6 1.217 1.236
0.8 1.240 1.287
1.0 1.245 1.347
2.0 1.198 1.613
3.0 1.155 1.777
4.0 1.129 1.880
5.0 1.1 10 1.952

1.50
1.50
1.50
1.49
1.48
1.47
1.37
1.35
1.37
1.38
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.... aIH·5.0 -=SL.
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1.0
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Fig. ~. Normal and shear stress distribution at surface ofelastic layer without slip. (-) JII/Jlo = 2.0.
v. = 0.3. Vo = 0.28. (--) 1''/''0 = 0.0. v. =0.3.

increases the normal stress becomes less concentrated. The solid curve is the case when the
layer is stifTer than the substratc. For this case the normal stress becomes more concentrated
as the I.tyer thickness incre.tses. For (1/ /I = 0.2. both cases yidded ne<.trly identical normal
stress distributions. Typical intcrfacial normal and shcar stress distributions are given in
rig. 3 for a/ II = 1.0. It is seen th.lt for the same contact mdius to layer thickness. a stin"
layer on soft substmte (solid curve) experiences a much higher interfacial normal strcss
than a soft layer on a stiff base (dashed curve). while the shears are nearly the same. The
peak interfacial stresses arc given in Fig. 4 as a function of tI/ II. When the substrate is
rigid (dashed curve) the interfacial norm.t1 stress becomes more concentrated as the layer
thickness decreases. while the shear stress is most concentrated at tI/II ~ 1.8. When the layer
is stiffer than the substrate (solid curve). the interfacial normal stress is most concentrated at
tI/II ~ 1.8. while the maximum shear concentration occurs at a/ /I ::: 3.5.

0.60

0.45

0.30

0.15

2.01.51.00.5
O.OO-f-----,.-----y"---..,...---~

0.0

rIa

Fig. 3. Normal and shear stress distribution at the interface for normal loading (alH = I). (-)
J.I.lJlo = 2.0. VI = 0.3. Vo = 0.28. (--) Jli/Jln = 0:0. VI = 0.3.
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0.8
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Fig. 4. Eff~"Ct oflayer thickness on the peak interfacial stresses for normal loading. (-) II,/Jln = 2.0.
V, =0.3. "II =0.28. (--) JI,/Ilo = 0.0. ", =0.3.

3. COMPLIANCE FOR TANGENTIALLY LOADED BONDED COATED BODIES

Basic cquatiolls tIt/Cl deril'ariolls
Suppose now thut the two elastically idcntic~ll coah.'d spheres described in the previous

s,-"Ction are loaded in the normal direction so us to produce a contact arc.. of radius a,
assumed small compared to R. und subsequently subjected to u tangential loud. P~. The
geometry und coordin<lte systems arc shown in Fig. I. Assuming the contact surfaces arc
perfectly rough, no slip will occur in the contact region. This zero-slip condition is identical
to the problem of u t,lOgential disphlcement applied to two welded bodies (sec Goodman
and Keer. 1977). provided that only those stresses urising from the relative tangcntiul
displacements arc considered. The shtte of stress in cuch of the clastic layer and half space
due to the uddition of the tangential loading is governed by the following boundary
conditions:

on == 0

t::1 = 11"1 = 0, lid =.1.. 0 < r < a

t::1 = 1:a l = 1::.. , = O. a < r < 00

(ISa)

(lSb)

on == If

1:::1 = 1:::110 1::.d = 1::.•0. t:.vl == t:vo. 0 < r < 00.

(1Sc)

(ISd)

Here, the symbol .1. represents a uniform translational motion whose magnitude depends
on p•. To avoid additional complexity .1. is chosen such that

.1. = !.1.o(r) +.1.(r) cos O. (16)

To satisfy the field equations of the linear theory of elasticity. displacements and
stresses arc expressed in terms of harmonic functions F.(r. O. =), G.(r. O. =) and H.(r. O. z)
through the relations

") iJF. cG. 2 cH,
_It.U,. =-:;- += -~- + - .:1.0l.ir cr r (,

(17a)
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2jJ Uf12 = ! cF. +:: cG. -2 cH.
• r cO r cO cr

1 c~F. 1 cG. z a~G. o~H'J

':11" =;. ae c: -(1-2v.);. eo +;. 00 c: - or 0:

o~F. cG. 02G.
'::.= o:~ -2(1-\'.) 0: +: c=~' (:x=0,1).

(17b)

(17c)

(l7d)

(17e)

(170

Here, subscripts I and 0 represent the layer and half space, respectively. The harmonic
functions F.(r, e.:), G.(r,e,z) and H.(r,O,:) can be taken as

with

[F.(r, e, z), G.(r. e,=W = [.I:(r. z). g.(r, zW cos e

H,,(r, 0.:) = h.(r.:) sin 0

I,(r.::) =1" [II sinh (~::)+ Bcosh (~:)]~-IJl(~r)d~

91(r,:) = i~) [Ccosh(e:)+Dsinh(e=»)Jl(er)de

", (r.:) = f''' [K sinh (~z) + L cosh (~z)Je .. IJ, (~r) d~
Jo

j~(r,:) = - fcc U[e-~:]e lJl(~r)de
Jo

90(r.:) = -1" V[e -~:)J ,(er) de

ho(r.:) = - f" W[e-~:]e-IJl(er)de.
Jo

(ISa)

(ISb)

(19a)

(19b)

(19c)

(19d)

(1ge)

(19f)

It is convenient to re-write the boundary conditions (I Sa-d) in cylindrical polar coordinates.
With

[ ]
T [(II (1) (I) (I)]T (}

U,., u:.. ':'" r::. = U,., U:. , ':n. '::. cos

[ ]
T _ [ (I) (II]T' (}

Uo•• "':0> - Uo•• "':tIJ Sin •

the boundary conditions (I S) and (16) may be written as

on: = 0

U~P+Ub\) =O. 0 < r < a

II~ : I _ u~ \) = 2A. 0 < r < a

t~n ±r~~~ = 0, a < r < 00

'::1 (r. e. 0) =O. 0 < r < 00

(:x=0.1)

(20a)

(20b)

(2Ia)

(2Ib)

(2Ic,d)

(2Ie)
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r~11 = r~1~, 0 < r < 00.
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(22a)

(22b,c)

(22d.e)

(22f)

The boundary conditions (2Ie) and (22). each of which holds over the entire plane, are
satisfied by solving the following simultaneous equations in terms of two coefficients S(~)

and T(';) :

where

{l}[C, D, U, V]T = !<S - T) cosh P[I, tanh p, l, tanh p]T (23a,b.c.d)

(23c,f)

K=!(S+T), L=_!(S+T)(sinhp+rcoshP>. w=-~ (S+T) ell.
2 cosh p+ r sinh P 2 cosh P+ r sinh {I

(23g.h.i)

Here {I = ~H. r = Jll/Jtn as before. rt is interesting to note that {J} for the tangenti.i1load
is identical to {J} for the normal load ; however. the right-hand sides of the eqtmtions are
dil1i.:renl. The mixed boundary conditions (2la-d) require that

in tl < r < 00

in 0 < r < a

[t~::(r,O)+t~tn(r.O)J = f" S(~)U2(~r)d~ =0In
(24a)

(24b)

+ ~ L'" [(M-N)T-(M+N)S]l2(~r)d~ =0 (25a)

+ ~ L-.c [(M-N)S-(M+N)T]lo(er)de = 41l,~ (2Sb)

where

{
r cosh p+sinh P}

M(P>=2(l-vt)(D-I), N(P>=-2 l-rsinhp+coshP' (26a.b)
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The mixed boundary conditions are satisfied (see Westmann. 1963) by taking

s= ~IZf tLzt/J,(t)JJd~t)dt (27a)

T= ~LZ r~ tIZX,(t)J_ "z(~t)dt--2V, ~1/2 r~ tli2t/J,(t)J3I2(~t)dt. (27b)Jo -v, Jo
The resultant tangential loading is given by the expression

i
2~i~ iaP, = - -t:.,,(r.O.O)rdrdO = -7t [t~::(r.O)-t~J\(r.O)]rdr
000

Then. using the following dimensionless forms

(28a)

(28b)

(32a)

s = ua. t = tel. r = pa. P= ~H.

XI(S) = I/,aX1(u). t/J,(s) = II,a'l',(I1). tPo(s) = 11,a<l>o(I1). (29)

the governing equations for '1'1 and XI can be derived from the boundary conditions (25a.b)
as

= _4(~.)1/2 ~ (30)
7t a

and

_ ~~.~_-v,) 'I',(u)- ~ _l_.(!!.-) r' 'I',(t)[~(u.t)dt = O. (31)
2- VI 7t 2- v, H Ju

where

[s(u,t) = f' (M+N)COS(pu ~)cos(/Jt ~)dP

[b(U. t) =iL

[1.4 - (1- ~''>N] cos (II tT ~7)[ -cos (lit ~)+ (Pt ; Y' sin (lit ~)]dP
(32b)

[7(U. t) = fa" (1.4 -N{ -cos (pU ~)+ (pU ~Y1 sin (pu.~)]cos (Pt ;) dlJ (32c)

[~(u.t) = i" [M+(l-V.>N{ -cos(pu ;)+(pu ;YI sin(PtT~)J



Compliance of ;:oated elastic bodies in contact 691

The resultant dimensionless tangential load and shear stress components on the loaded
surface are obtained as

(33)

To convert the above shear stress components from polar coordinates to Cartesian coor
dinates the following equations are needed:

( 0 -) I[ til '"]+1[ 1I1+ (II] 2(Jt:., I r, ,_ = ~ f:rl - f:tli ~ t:rl t:111 cos

( 0 -) - I [ (II + (II] . 20t:"I r, ,.. - ~ f;rl f;lll sin .

(35a)

(35b)

After calculating XI(IT) and 'fll(f) [by using the no-slip conditions corresponding to eqns
(30) and (31)}, the stresses emd displacements can be calculuted numeric'llly using (17),
(18). (19). (23) and (27).

When the layer is infinitely thick (alII =0) the compliunce is

(36)

It is noted that there is a singularity in both [f~n -t~U and [r~:: +t~m at fJ = I (r = a). In
view of eqns (35a.b) the first term on the right-hand side of eqn (34b) has a singularity in
the radially symmetric portion. whereas the first term on the right-hand side of equation
(34a) has a singularity in the asymmetric portion. From (36). only the radially symmetric
singularity appears when the layer is infinitely thick. However, both singularities appear
when the layer has finite thickness. In some cases this non-radially symmetric singularity
can be ignored in an approximate sense, which can greutly simplify the analysis (see
Goodman and Keer, 1975).

The physical quantity C, = 2!1/ p." the initial tangential compliance, is of technological
interest. The variation of this quantity for various material properties and layer thicknesses
is given in Table 3. For the case ofa rigid substrate the results are identical to those obtained
by Goodman and Keer (1975).

NumeriCllI results ancl clismssion
Computations have been carried out for severnl layer-substrate combinations. Shear

stress distributions at the layer surface are given in Fig. 2. The elTect of the combination of
materials and layer thickness on the shear stress distribution is similar to the normal load
case. Typical interfaciul normal and shear stress distributions are given in Fig. 5 for
alH = 1.0. It is noted that the case of the stilT layer (solid curve) gives the least concentrated
interfacial stress distributions. The peak interfacial stresses are given in Fig. 6. In view of
eqn (35). Ht~n -f~J\l is the symmetric interfacial stress component whereas Hf~:: +t~U is
the asymmetric interfacial stress component. Both interfacial stress components increase as
the layer thickness decreases; however. the interfacial stress component. Ht~:: -t~m. is
larger than Ht~:l + t~\ I for the case of a rigid substrate (dashed curve), while the converse
is true for the case of a stilT layer (solid curve).
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Table 3. Initial compliance. C, .. U1IP. (Case I: Ill/llo = 0.0." == 0.3;
Case 1: 1l,lllo=0.33. ,,=0.33. '0=0.28: Case 3: 1l,/llo=1.0.

vI = 0.28. Vo = 0.28; Case 4: Il,!Ilo = 2.0. vI = 0.3. v" == 0.18)

a!H Case I Case 2 Case 3 Case 4

0.0 0.415 0.418 O.·US 00415
0.1 0.387 0.397 O.·US 0.447
0.4 0.351 0.377 00418 0.468
0.6 0.311 0.360 00418 0.486
0.8 0.295 0.345 00418 0.503
1.0 0.272 0.332 OAI8 0.518
2.0 0.194 0.186 0.418 0.574
3.0 0.150 0.258 OAIS 0.613
4.0 0.112 0.240 0.418 0.640
5.0 0.104 0.227 0.418 0.661

4. THE EFFECT OF MICRO·SLlP IN TANGENTIALLY LOADED COATED BODIES

Basic ('quations ane' claim/ions
In the previous section tangential loading was considered for the two identical welded

and coated elastic spheres. The model of normal and tangential contact loading ofelastically
identical coated spheres follows the same derivations as in Goodman and Keer (1975).
Because a singularity arises in the absence of slip. in reality then, for this contact problem.
slip must occur. If it is assumed that the slip region is a circular annulus of inner radius
(' < ct, then this inner radius can be chosen so as to eliminate the radially symmetric
singularity in f:\I. produced by the first term on the right-hand side of eqn (35a). When the
layer is nol infinitely thick, non-mdially symmetric singularities occur both in f:d and f:",.

Although this layer ellcct presents an obstacle to solving the tangenlially loaded layer
conlacl problem. il is possible to obtain upper and lower bounds for quantities of lech
nological inlerest.

The stale of stress for normal loading is first derived in terms of the stress function l/Jo.
When the tangential load is applied subsequent to normal loading, the state of stress is
given by the harmonic functions shown in eqns (17d-f). The contact region is then divided
into two parts: an inner circle, 0 < r < c, where no slip occurs. and an annular slip zone,

1.00

2.01.51.0

",
I

I \~
I

I

I

0.00 +-';:;...,.,::::.....,.---""T'"-~-r----,
0.0

0.25

0.50

0.75

rIa

Fig. 5. Normal and shear stress distribution at the interface for tangential loading without slip
(alH = I). (-) Ilolpo = 2.0." = 0.3. Vo = 0.28. (--) Ilolil. =0.0." = 0.3.
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2 ..I tal
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1 [~I) + t(1) I
2 ..I tal
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11M

Fig. 6. Effect of layer thickness on the peak interfacial stresses for tangential loading without slip.
(-) /l,i/l" = 2.0.• , = 0.3••" = 0.28. (--) /l,i/l" = 0.0•• , = 0.3.

c < r < (I. where shear tractions obey the Amontons-Coutomb friction taw. To satisfy these
mixed boundry conditions the following equations are used instead of equations (27a.b)

(37a)

Here. / represents the coeflicient of friction and i5 is. as yet. an unknown dimensionless
constant that will be automatically determined later. Since there is no singularity at the
boundary dividing the slip and no-slip regions. this requirement is met by imposing the
auxiliary conditions

(38a,b)

By substituting eqns (37) into eqn (24) and making usc of eqns (29) and (38a.b), dimen
sionless shear stresses on the contact surface can be derived as follows:

On: =0

.II [<l>o(t»)' ]+<> (2 2) 1;2 dt , 0 < P < cia
ria t -p

(39a)

(39b)
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2~, [r~]: - r~m = - (2~) L~ [f a (r~~(~~: 1/2 dr - 2/ f.~ (r2~~~~» 12 dr

VI 1,a7:- I[7:'I'I(r»)' VI 1",17:-
1

[7:
3
$0(7:»)' ]+-- ",.,dt+-2-~ ""dt.2-v, p (r _po) ." -VI l'<l (7:- -p~) ,-

o<p <cia (39c)

-_1- [2 i' $~(t) d - _\_"- 5:1' 7:-'[t
3
$0(t)]' d ]- ,"t f ., .., I'''' r (J ..,"'t 1'" T(21t) 1- I' (7:~-p~)'" 2-v( p (t--P") -

cia < p < co. (39d)

The resultant tangential load is derived from (28a) and (39c) :

(40)

By making use of the no-slip bound,try conditions. (2Ia.b). together with the auxiliary
conditions (38a.b). governing equations for the stress functions '1'1 and XI as well as the
unknown dimensionless constants / and () can be derived in the form of the simultaneous
Fredholm integral equations as

_4(~)'12 ~ (4Ia)
1t a

and

The auxiliary conditions become

(42a.b)

In the slip region. cia < {1 < I. shear stresses on the contact surface can be expressed
[in view of (39b.d)l as

(43a.b)



where

Complian\.""e ofcoated elastic bodies in contact

Table 4. Bounds for tangential load. compliance and stress (stress components are
evaluated at r =0; Ili/llo = 0.0. vI =0.3. a/H = 5.0)

c radius of non-slip region
-=

radius of contact regiona

Bound 0.2 0.4 0.6 0.8

p. A 0.994 0.946 0.794 0.·,n5

fP, B 0.994 0.946 0.793 0.475

l1 A
p. ilia

B
0.103 0.089 0.075 0.062

I [r~~I-r~:') A -1.660 -1.419 -1.182 -0.972

2 p. B -1.676 -1.433 -1.192 -0.977
lta~

~!/ A -0.202 -0.193 -0.168 -0.139
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(43c)

A. Stifl approximatioll. For this hound the no-slip condition (4Iu.b) for the circulur
region. 0 < fl < cia. is sutislied exactly. For u given vulue of cia. stress functions X.(tJ) und
'l'1(tJ). as well us the unknown parameters fund 15. cun be determined through the usc of
eqns (4Iu.b) und (42). However. the sheur stresses given in eqns (39b.d) do not sutisfy the
Amontons Coulomh friction luw exuetly in the slip region. cia < p < I. The quantities in
hruckets in eqns (43u.b) represent error terms. This error is small. however. provided (i)
all/is smull or (ii) 151f < I. The compliunce. sheur stress components. p.IfP: and fJI f for
representative values of cia. al fl. und different layer-substrate combinations are given as
bound "A" in Tubles 4-6.

B. Soji approximation. In this bound the Amontons-Coulomb friction law is satisfied
exuctly ut every point in the slip region. cia < p < I. This can be achieved by setting

Table 5. Buunds fur tangential loold. compliance and stress (stress components are
evaluat\.-d at r = (); II,/pu =0.33. V, =0.33. Vu = 0.28. a/H = 5.0)

c radius of non-slip region
~ =radiiisof contact region

p.
fP,

I [r~~l - r~f:'1

2 p.
1ta~

Bound

A

n

A

B

A

B

A

0.2

0.993

0.182

-1.415

-1.429

-0.151

0.4

0.942

0.166

-1.173

-1.186

-0.141

0.6

0.790

0.147

-0.959

-0.967

-0.121

0.8

0.480

0.128

-0.779

-0.784

-0.099
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Table 6. Bounds for tangential load. compliance and stress (stress components are
evaluated at r - 0; Il,/Ilo "" 2.0. V, "" 0.3. Vo "" 0.28. alH "" 5.0)

c radius of non-slip region
""a radius ofcontact region

Bound 0.2 0.4 0.6 0.8

P, A
fP, B 0.991 0.931 0.779 0.497

~ A
-ilIa 0.451 0.423 0.391 0.359P, B

I [t~'-t~:'l A -1.057 -0.808 -0.629 -0.501
2 P, B -1.047 -0.798 -0.621 -0.495

lfU:

J,f A 0.108 0.104 0.086 0.065

"'.(0') = C5 = 0 in eqns (43a.b). Then

',,_I =0, 0 < f1 < 00. (44c)

Dy rmlking use of the no-slip conditions in the.~ direction (4Ia) together with the auxiliary
condition (42u) XI(O') und f cun be obtained. The result of this approximation is thut the
boundary condition ':d = 0 is satisfied as shown in eqn (44c) insteud of U"I = O.

The compliance, shear stress components, p.If P: and C51f for the representative values
of cia. alH, and different layer-substrate combinations are given as bound "8" in Tables
4-6.

NUII/erical results anti discussion
Computations have been carried out for several layer-substrate combinations. The

bounds for tangential load. compliance and surface stress components are given in Tables
4-6. It is noted that, for all layer-substrate combinations considered, the tangential load
und compliance were identical to three decimal points. As the layer thickness decreases
(all/increases) these combinations give different results. Typical and most sensitive of these
quantities is the stress. When the layer is softer thun the substrate, the "soft" approxim<ltion
gives an upper bound and the "stiff" approximution gives a lower bound for the symmetric
stress component. When the layer is stiffer than the substrate. on the other hand. the "soft"
approximation gives a lower bound and the "stiff" approxim<ltion gives an upper bound
for the symmetric stress components. This trend is reflected by the quantity p./p.o. When
P.llito > I, the stiff approximation yields an upper bound: when Jt.1Jto < I, the soft approxi
mation yields the upper bound. However, in each case the two approximations yield a
solution which differs by less than 3%. Therefore, in the present figures, only the results
using the soft approximation are shown. These trends are shown for the two cases: a coating
layer on a rigid substrate (Fig. 7a) and a hard coating layer on a soft substrate (Fig. 7b).
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.1 (~(I) _ ~(l»
2 rzl 8z1

P,J(1ta2)

2.0

cia • 0.2, 0.4, 0.6, 0.80.5

1.5 t----~

1.0+------------":

1.00.80.60.40.2
0.0 +-.....-.....-..,-...............-,-----""T".......--r---.---.---i

0.0
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.1 «I) (I»
2 ~n:1 - ~8zl

P•.I(1ta2)

2.0 ,....--------------....,

1.5

1.0

0.54--------

cIa = 0.2, 0.4, 0.6, 0.8

1.00.80.60.40.2

0.0 +-.....-.....-..,.................-.-...-..........,................--.-_......-4
0.0

rIa

(b)

Fig. 7. (a) Shear stress distribution at surface ofclastic layer with micro-slip. a/H = 5.0.11,/110 =0.0
and \', = 0.3. (b) Shear stress distribution at surface of clastic layer with micro-slip. a/H = 5.0.

11,/110 = 2.0. v, =0.3. and Vo =0.211. c/a = radius of no-slip region/radius of contact region.

The relations between the size of slip zone, lateral motion and tangential load for those
cases are presented for rigid substrate (Fig. Sa) and for a hard coating (Fig. Sb). For all
cases. the thickness of the coating layer exhibits an insignificant influence on the ratio of
shear traction and friction force. In other words, p.•/!P: is independent of the layer thickness
for both hard and soft coatings. On the contrary, the ratio 9f lateral motion in the !)bsence
of slip and lateral motion with slip,/i,,//i... varies with the layer thickness. The type ofcoating
(hard or soft) also has a significant influence on the lateral motion. For a soft coating, the
ratio of the lateral motion increases as the coating layer becomes thicker, while the opposite
conclusion is true for a hard coating. In future studies in these areas, the soft approximation
should be used since it is simpler and more cost-effective with regard to computer time.
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1.0

o.a

U

U
~. ~ d.G.I.G. U.0.
6, H

U '. .---. - .. O.z. 5.0
IP. H

0.0
0.0 U U G.6 o.a 1.0

da

(a)

1.0

o.a

0.6

0...

0.2

0.0
0.0 0.2 0... G.6 o.s 1.0

da

(b)

Fig. 8. (a) Relation betwl.ocn slip zone dimension, latentl motion and tangential load for 11'//1" '" 0.0
and V, '" 0.3. (b) Relation betwl.ocn slip zone dimension, lateral motion and tangential Imld for
11,/11" = 2.0, v, '" 0.3 and v" '" 0.211. u/I/ = radius of contact region/thicknL'Ss of elastic layer;
rill = radius of no-slip region/radius of contact region; 60./60. = lateral motion in absence of

slip/lateral motion with slip.

Arknowledgement-The authors are grateful for the support of this research by the Center for Engineering
Tribology.

REfERENCES

Callaneo. C. (1938). SuI contallo di due corpi e1astici. Ace. dei Lincei, Rend. Ser. 6. 27, I, 342-348; 11,434-436;
III. 474478.

Copson. E. T. (1961). On certain dual integral equations. Proc. GIU.fgoW Muth. A.fsol·. 21-24.
Goodman. L. E. and Kcer. L. M. (1975). Innuence of an clastic layer on the tangential compliance of bodiL'S in

contact. In The Mt.'chanics of the Contact Between Dt.'formahle Bodies (Edited by A. D. de Pater and J. J.
Kalker). pp. 127-151. Delft University Press.

Goodman. L. E. and Kcer. L. M. (1977). Near field slress analysis of a spot weld between elastic plates. Int. J.
Soliclf Struct. 13.151-158.

Green. A. E. and Zerna. W. (1954). Theoreticul Elu.rticity. 1st Edn. pp. 169-170. Oxford University Press.
f1ertz. H. (1882). Uber die Beruhrung fester elastischer Korpcr. Jld. Reine u. Angew. Math. 92, 156-171.
Lysmer. J. and Duncan. J. M. (1972). Stre.f.ft.'s and Deflections in Foundations and Pat'ement.f. 5th Edn. Department

of Civil Engineering. University of Califomia. Berkeley. CA.
Mindlin. R. D. (1949). Compliance ofclastic bodies in contact. J. Appl. Mech. 16.259--268.
Muki. R. (1960). Asymmetric problems of the theory of elasticity for a semi-infinite solid and a thick plate. In

Progress in Solid Mechanics (Edited by I. N. Sneddon and R. Hill). Vol. J. North-Holland. Amsterdam.
Westmann. R. A. (1963). Simultaneous pairs ofdual integral equations. SIAM Rev. 7. 341-348.


